Cubic graphs, their Ehrhart quasi-polynomials, and a scissors congruence phenomenon
نویسندگان
چکیده
The scissors congruence conjecture for the unimodular group is an analogue of Hilbert’s third problem, for the equidecomposability of polytopes. Liu and Osserman studied the Ehrhart quasi-polynomials of polytopes naturally associated to graphs whose vertices have degree one or three. In this paper, we prove the scissors congruence conjecture, posed by Haase and McAllister, for this class of polytopes. The key ingredient in the proofs is the nearest neighbor interchange on graphs and a naturally arising piecewise unimodular transformation.
منابع مشابه
Quasi-period Collapse and GLn(Z)-Scissors Congruence in Rational Polytopes
Quasi-period collapse occurs when the Ehrhart quasi-polynomial of a rational polytope has a quasi-period less than the denominator of that polytope. This phenomenon is poorly understood, and all known cases in which it occurs have been proven with ad hoc methods. In this note, we present a conjectural explanation for quasi-period collapse in rational polytopes. We show that this explanation app...
متن کامل(Z)-Scissors Congruence in Rational Polytopes
Quasi-period collapse occurs when the Ehrhart quasi-polynomial of a rational polytope has a quasi-period less than the denominator of that polytope. This phenomenon is poorly understood, and all known cases in which it occurs have been proven with ad hoc methods. In this note, we present a conjectural explanation for quasi-period collapse in rational polytopes. We show that this explanation app...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملA Finite Calculus Approach to Ehrhart Polynomials
A rational polytope is the convex hull of a finite set of points in Rd with rational coordinates. Given a rational polytope P ⊆ Rd, Ehrhart proved that, for t ∈ Z>0, the function #(tP ∩ Zd) agrees with a quasi-polynomial LP(t), called the Ehrhart quasi-polynomial. The Ehrhart quasi-polynomial can be regarded as a discrete version of the volume of a polytope. We use that analogy to derive a new ...
متن کاملCoefficient functions of the Ehrhart quasi-polynomials of rational polygons
In 1976, P. R. Scott characterized the Ehrhart polynomials of convex integral polygons. We study the same question for Ehrhart polynomials and quasi-polynomials of nonintegral convex polygons. Define a pseudo-integral polygon, or PIP, to be a convex rational polygon whose Ehrhart quasipolynomial is a polynomial. The numbers of lattice points on the interior and on the boundary of a PIP determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.07164 شماره
صفحات -
تاریخ انتشار 2018